
Specification of the Fermilab
Hierarchical Configuration Language

Ryan Putz
draft 3

Contents

1 Introduction 2
2 FHiCL Syntax 3
3 FHiCL Semantics 9
4 Features of Programming Language Bindings 11
5 General Requirements 12
6 Output Requirements 12
7 Glossary 12

1

2 draft 3

1 Introduction

1.1 Purpose

This document provides the formal specification for the Fermilab Hierarchical Configura-
tion Language, FHiCL. This specification includes several aspects of FHiCL:

• FHiCL Syntax

• FHiCL Semantics

• Canonical Value Representations

FHiCL is a customized language created for the storage of scientific parameter sets in a
medium that can be easily understood and processed.

1.2 Rationale

FHiCL was developed in order to produce a standard configuration language for the
storage, communication, and manipulation of scientific parameter sets.
The existence of a standard configuration language would allow for the creation of
programming language bindings that can read and process valid FHiCL documents,
returning a parameter set to the user.

1.3 Scope of This Facility

This project will include the development of a grammar specification for FHiCL (I.E.
this document), creation of a basline parser (using Yacc and Bison), and the creation
of various programming language bindings which shall read in FHiCL documents and
attempt to create a parameter set.

Specification of the FHiCL 3

2 FHiCL Syntax

The FHiCL syntax is defined by the following bison grammar:

\include{"bnf.y"}

In this grammar, all uppercase names denote tokens. These tokens are defined by the
following flex specification:

\include{"bnf.l"}

2.1 Low-Level Entities

Note: For all rules in this section, whitespace is not allowed between tokens.

2.1.1 Reserved and Special Characters

A char is one of:

1. any ASCII character except for:

• double-quote (”)

• reverse solidus (\)

• control characters

2. (printable characters)

3. one of a number escape sequences, noted below:

• escaped double-quote (\”)

• reverse solidus (\\)

• solidus (\/)

There are a number of reserved char values:

• colon (:)

• double colon (::)

• left/right brace ({})

• left/right bracket ([])

• left/right paren (())

• at sign (@)

4 draft 3

2.1.2 Atoms

The most basic unit of FHiCL is the atom, which is defined as:

atom: number | string | NIL | BOOL_TOK | REF

EBNF:

atom => char | string
string => alpha[alnum]* | digit[alnum]*

Notes:

• The canonical representation of an atom is a sequence of printable characters.

• Every atom can be requested in canonical string form.

• There are three valid syntaxes for a string in FHiCL:

1. Alpha Start String - No quotes, string values must be simple and contain no
white space.

2. Single-Quote - Surrounded by single quotes; all content is quoted verbatim.

3. Double-Quote - Surrounded by double quotes; content may contain special
escaped characters.

• The two special characters that are allowed in all string forms are newline and tab.

2.2 Mid-level Entities

Note: For all rules in this section, whitespace is allowed only where specified by the
whitespace token ws.

2.2.1 Comments

FHiCL comments are denoted by the # symbol, or by \\ which is placed at the beginning
of the comment. FHiCL comments are single-line, and should be ignored by parsers.

2.2.2 Names

A name is similar to a key in a key-value pair of a C++ mapping, or ... (other language
examples here)
Example:

x: 1.0

In this case, ”x” is a name.

Specification of the FHiCL 5

2.2.3 Hierarchical Names

A hierarchical name, or hname is a compound name using the dot index or bracket index
to denote levels of scope.

cont1:{x: 1.0 y: 2.0 z: 3.0}
cont1.x : 5
OR
cont2:[1, 2, 3}
cont2[0] : 1

EBNF:

hname => atom (DOT_INDEX|BRACKET_INDEX) atom

2.2.4 Values

An element of type value is either a single atom, a collection of atoms, or a collection of
associations. Example:

a : 1.0
#Where "1.0" is the value of the atom named "a"

EBNF:

value => table|sequence|atom

Note: see definitions for table and sequence in the next section

2.3 High-Level Entities

Note: For all the rules in this section, whitespace is allowed between any two tokens,
and is not significant.

2.3.1 Definitions

An element of type definition is used to associate a value to a name. The syntax of a
definition is:

a : 1.0

EBNF:

definition => (name|hname) COLON value

6 draft 3

2.3.2 Tables

Elements of type table are space- or line-separated collections of definitions and are
denoted by (possibly empty) braces:

tab1:{a: 1.0 b: 2.0 c: 3.0}

EBNF:

table => LBRACE table_body RBRACE
table_body => | table_items
table_items => table_item | [table_item + "," + table_items]
table_item => definition

Notes:

• Tables may contain comments IF AND ONLY IF the table elements are line-
separated.

• Comments cannot exist inbetween space-separated table elements.

• two tables are the same when their hash code is the same (the byte sequences fed
into the hash must be identical).

2.3.3 Sequences

Elements of type sequence are comma-separated collections of values and are denoted
by (possibly empty) brackets:

seq1:[a, b, c, d]

EBNF:

sequence => LBRACKET sequence_body RBRACKET
sequence_body => | sequence_items
sequence_items => sequence_item | [sequence_item + "," + sequence_items]
sequence_item => value

NOTE: Sequences CANNOT contain comments.

Specification of the FHiCL 7

2.3.4 Documents

The document is the highest-level construct in FHiCL. Any implementation of a FHiCL
parser processes a document as if it were a single string.
A document consists of exactly one, possibly empty, table such as:

#Document start
main:{

a: 1.0
b: "hi"
c: dog
}

#Document end

EBNF:

document => table

Documents may have one or more prologs at the top of the document. The only items
that may occur before a prolog are comments and other prologs.

2.3.5 Overrides

An element of type override is used to associate an existing element with a new value, or
to create a new element in a table or sequence. The syntax for an override:

a: 1.0 #Declaration and initialization
a : 5.0 #Override (Assignment)

OR

tab1:{ a:1 b:2 c:3 }
tab1.d : 5 #Creating a new element ’d’ in table ’tab1’

OR

seq1:[1, 2, 3]
seq1[3] : 5 #Creating a new element ’5’ in sequence ’seq1’

EBNF:

override => (name|hname|DOTINDEX|BRACKETINDEX) COLON value

Note: the name for an override is an hname.

8 draft 3

2.3.6 Includes

In order to import values from external documents into a FHiCL document, an include
statement is used to tell which file’s values should be inserted into the document. A
FHiCL #include statement differs from the C++ #include statement in that the FHiCL
#include acts more as a union of two documents , as opposed to just allowing one file to
access another.
The include statement syntax is as follows:

//This is a valid include statement:
#include "filename.ext"

//These are invalid include statements:
#include filename.ext
//include "filename.ext"
#include"filename.ext"
include "filename.ext"
#includefilename.ext

Where the quoted string ”filename.ext” represents the file name and file extension of the
included file.
NOTES:

• There is exactly one space between ’#include’ and ’filename.ext’.

• Also, the filname must be enclosed in double quotes.

• Any deviation from the include statement syntax will result in a parse failure.

• Circular or repetive includes are not supported and should be checked for by the
parser.

• Included values can be overridden and can override values that are within the same
scope and share the same name.

• Includes must be on their own line, otherwise they will be treated as comments

2.3.7 Prologs

Prologs are constructs which exist at the start of a FHiCL document. Prolog boundaries
are denoted by the use of BEGIN PROLOG and END PROLOG. All data within a prolog
may not be reassociated/reassigned outside of the prolog. Data within a prolog may be
referenced in the main document.
Below is an example of a valid FHiCL Prolog:

BEGIN_PROLOG
x :5
y :6
END_PROLOG

Specification of the FHiCL 9

2.3.7.1 References

In order to associate a name with the value of a pre-existing definition the use of the
FHiCL reference notation is required:

@local::
OR
@db::

Example:

x : 5
y : @local::x
z : @db::x

References point to the most-recently encountered variable with a matching name.
Reference names must be extremely specific in which value they are pointing to.
For instance, if we have a table tab1 such as:

tab1:{ a:1 b:2 c:3 }

and we want to set an outside variable to the value of a in tab1. The reference for this
would look like:

tab1:{ a:1 b:2 c:3 }
x : @local::tab1.a

And this would give us a resulting parameter set of x : 1
In situations where an element in a prolog shares a name with an element in the
document body, any references made to a variable of the same name will result in a
reference look-up to the element in the document body.

3 FHiCL Semantics

3.1 High-level Result of a Successful Parse

The result of parsing a document is a single table. The definitions and overrides appearing
before the top-level table are intended to allow the user to supply values to be substituted
into elements in the table. The definitions and overrides appearing after the top-level
table are intended to allow the user to replace values in that table.

3.2 Representation of Atoms

In the parse results, all atoms except for nil and ref are represented as character strings.
The atom nil is represented by a value specified by the binding for a given programming
language. The resolution of ref s is described in section refs below.

10 draft 3

Each language binding provides its own mechanism for turning atoms of type inte-
ger, real and complex from their string representation into the appropriate numerical
representation.

3.3 Value Semantics

• Values of true and ”true” are identical.

• Values of false and ”false” are identical.

• To include leading or trailing zeros in any number, the number must be quoted.

• The small range of a real or integer value is 1,000,000.

• Real numbers with no fration will be converted to integer format if within the small
range.

• A canonical real has no leading zeros in exponent or fraction, lower case e, with
plus or minus.

• Canonical integers have no leading zeros.

• Null is not supported.

• Infinity and +infinity both become ”infinity”.

• −Inifinity is supported.

• A leading + is not legal, except when used with ”infinity”

• A leading 0 is not legal unless it is the sole character. ****Under Review****

• Adding a double to a parameter set programmatically will have a rule that specifies
how it will be handled.

• 00.000E+000 will be ”0.0” in canonical form.

• Any exponent as e+0 will be stripped in canonical form.

• −0.0 retains the negative.

• nil and ”nil” are treated as identical.

• String concatentation opreatiosn are permitted, but only quoted string values.

• No unquoted white space is permitted

• Quotes for string values can be left out if the string value has no white space and is
simple.

Specification of the FHiCL 11

3.4 Resolution of Referencess

Atoms of type reference are replaced by the value indicated by the hname part of the
reference, where the environment in which the hname is evaluated is determined by the
db or local at the end of the reference.
The presence of local indicates that the scope in which the hname is to be evaluated is
the previously-read document text. The presence of db indicates that the scope in which
the hname is evaluated is the single database to which the parser has access.
If the parser has no access to a database, and a reference which ends in db is encountered,
a parse failure results. If, in the appropriate scope, the hname in a reference does not
resolve to any value, a parse failure results.

3.5 Issues with Leading Zeros and Canonical Representation

As a rule, leading zeros are not allowed in any situation where a number may be
misinterpreted as a non-base-10 number with the inclusion of (a) leading zero(s).
This rule only applies to numbers that may be represented as a base-10 integer. Floating
point, binary, hexidecimal, and octal numbers may have leading zeros. Exponential
numbers may have leading zeros, but if they are representable as a base-10 integer, their
canonical form will be in integer form.
The rationale for this rule is that in some programming languages, a leading zero is used
to denote a non-base-10 number, I.E. ”0x” is used to denote a hexidecimal number.

4 Features of Programming Language Bindings

4.1 Processing

Each programming language binding for FHiCL must be able to produce a parameter set
in the standard FHiCL syntax.

4.2 Output

Each language binding shall return a native container construct closest to that of the
FHiCL table. The returned container shall contain a valid FHiCL parameter set.

12 draft 3

4.3 Storage

Storage of parsed results from each program language binding shall be in th standard
FHiCL syntax as defined above. FHiCL documents are to be stored in files with the suffix
”.fcl”.

5 General Requirements

5.1 Additional Requirements for Dynamically Typed
Languages

Tables and sequences should be represented by a built-in type of the programming
language.
If the target programming language has a standard JSON library, we want to make
sure that our constructs can be translated to JSON format and back without use of any
FHiCL-specific library.
It is important that code that uses the representation of a table not need any FHiCL-
specific code.

6 Output Requirements

6.1 Output Intended for Human Reading

”Pretty Printers” must make use of newlines and indentation throughout parameter
set output. The use of newlines and indentation between table elements, individual
associations, include statements and comments is required.

6.2 Output Intended for Machine Reading

Output for use by machine(s) is to be machine parsable, have an ASCII dump facility
and platform neutral. Machine output is to be exclude unnecessary elements such as
comments.

7 Glossary

7.1 Alphas

An alpha is any of the ASCII characters a-z or A-Z.

7.2 Digits

A digit is any of the ASCII characters 0-9.

Specification of the FHiCL 13

7.3 White Space

A ws is one of the three whitespace characters: space/tab, newline, and line return.

7.4 Alphanumerics

An alnum is any of the ASCII characters a-z, A-Z, 0-9 or other printable characters

	1 Introduction
	2 FHiCL Syntax
	3 FHiCL Semantics
	4 Features of Programming Language Bindings
	5 General Requirements
	6 Output Requirements
	7 Glossary

